

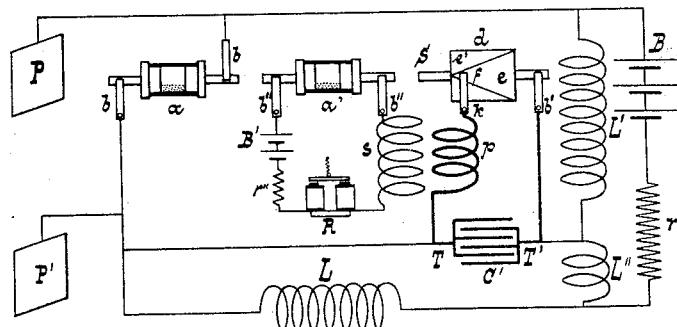
No. 685,954.

Patented Nov. 5, 1901.

N. TESLA.

METHOD OF UTILIZING EFFECTS TRANSMITTED THROUGH NATURAL MEDIA.

(Application filed Aug. 1, 1898. Renewed May 29, 1901.)


(No Model.)

2 Sheets—Sheet 1.

Fig 1.

Fig 2.

WITNESSES

Benjamin Miller.
M. Lanson Dyer.

INVENTOR

Nikola Tesla
BY
Ken. Page & Cooper

ATTORNEYS.

N. TESLA.

METHOD OF UTILIZING EFFECTS TRANSMITTED THROUGH NATURAL MEDIA.

(Application filed Aug. 1, 1899. Renewed May 29, 1901.)

(No Model.)

2 Sheets—Sheet 2.

Fig. 3

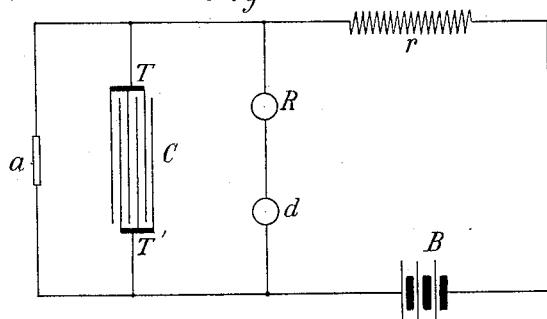


Fig. 4

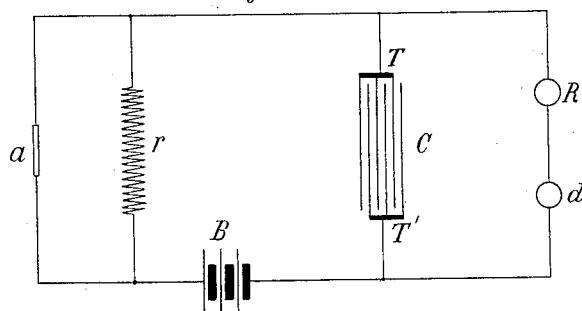
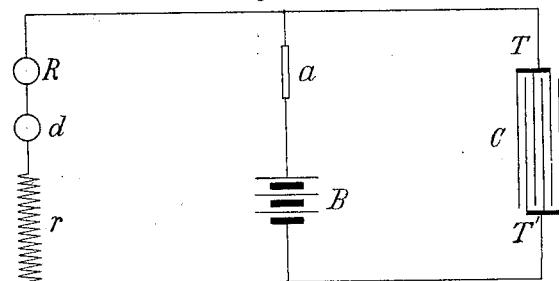



Fig. 5

Witnesses:

Raphael Petter
Benjamin Miller

Nikola Tesla Inventor
by Rev. Page & Cooper Attys

UNITED STATES PATENT OFFICE.

NIKOLA TESLA, OF NEW YORK, N. Y.

METHOD OF UTILIZING EFFECTS TRANSMITTED THROUGH NATURAL MEDIA.

SPECIFICATION forming part of Letters Patent No. 685,954, dated November 5, 1901.

Application filed August 1, 1899. Renewed May 29, 1901. Serial No. 62,316. (No model.)

To all whom it may concern:

Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at New York city, in the county and State of New York, have invented a new and useful Improvement 5 in Methods of Utilizing Effects Transmitted from a Distance to a Receiving Device Through the Natural Media, of which the following is a specification, reference being had to the accompanying drawings, which form a part of the same.

The subject of my present invention is an improvement in the art of utilizing effects transmitted from a distance to a receiving de-

15 vice through the natural media; and it consists in a novel method hereinafter described.

My invention is particularly useful in connection with methods and apparatus for operating distant receiving devices by means of 20 electrical disturbances produced by proper transmitters and conveyed to such receiving devices through the natural media; but it obviously has a wider range of applicability and may be employed, for example, in the investigation or utilization of terrestrial, solar, 25 or other disturbances produced by natural causes.

Several ways or methods of transmitting 30 electrical disturbances through the natural media and utilizing them to operate distant receivers are now known and have been applied with more or less success for accomplishing a variety of useful results. One of these ways consists in producing by a suitable apparatus rays or radiations—that is, disturbances—which are propagated in straight 35 lines through space, directing them upon a receiving or recording apparatus at a distance, and thereby bringing the latter into action.

40 This method is the oldest and best known and has been brought particularly into prominence in recent years through the investigations of Heinrich Hertz. Another method consists in passing a current through a circuit, preferably one inclosing a very large area, inducing thereby in a similar circuit situated at a distance another current and affecting by the same in any convenient way 45 a receiving device. Still another way, which 50 has also been known for many years, is to pass in any suitable manner a current through a portion of the ground, as by connecting to two

points of the same, preferably at a considerable distance from each other, the two terminals of a generator and to energize by a 55 part of the current diffused through the earth a distant circuit, which is similarly arranged and grounded at two points widely apart and which is made to act upon a sensitive receiver. These various methods have their limitations, 60 one especially, which is common to all, being that the receiving circuit or instrument must be maintained in a definite position with respect to the transmitting apparatus, which often imposes great disadvantages upon the 65 use of the apparatus.

In several applications filed by me and patents granted to me I have disclosed other methods of accomplishing results of this nature which may be briefly described as follows: In one system the potential of a point or region of the earth is varied by imparting to it intermittent or alternating electrifications through one of the terminals of a suitable source of electrical disturbances, which 75 to heighten the effect has its other terminal connected to an insulated body, preferably of large surface and at an elevation. The electrifications communicated to the earth spread in all directions through the same, 80 reaching a distant circuit, which generally has its terminals arranged and connected similarly to those of the transmitting source and operates upon a highly-sensitive receiver. Another method is based upon the fact that 85 the atmospheric air, which behaves as an excellent insulator to currents generated by ordinary apparatus, becomes a conductor under the influence of currents or impulses of enormously high electromotive force which I 90 have devised means for generating. By such means air strata, which are easily accessible, are rendered available for the production of many desired effects at distances however great. This method, furthermore, allowed 95 advantage to be taken of many of those improvements which are practicable in the ordinary systems of transmission involving the use of a metallic conductor.

Obviously whatever method be employed 100 it is desirable that the disturbances produced by the transmitting apparatus should be as powerful as possible, and by the use of certain forms of high-frequency apparatus which

I have devised and which are now well known important practical advantages are in this respect secured. Furthermore, since in most cases the amount of energy conveyed to the distant circuit is but a minute fraction of the total energy emanating from the source it is necessary for the attainment of the best results that whatever the character of the receiver and the nature of the disturbances as much as possible of the energy conveyed should be made available for the operation of the receiver, and with this object in view I have heretofore, among other means, employed a receiving-circuit of high self-induction and very small resistance and of a period such as to vibrate in synchronism with the disturbances, whereby a number of separate impulses from the source were made to co-operate, thus magnifying the effect exerted upon and insuring the action of the receiving device. By these means decided advantages have been secured in many instances; but very often the improvement is either not applicable at all, or if so the gain is very slight. Evidently when the source is one producing a continuous pressure or delivering impulses of long duration it is impracticable to magnify the effects in this manner, and when, on the other hand, it is one furnishing short impulses of extreme rapidity of succession the advantage obtained in this way is insignificant, owing to the radiation and the unavoidable frictional waste in the receiving-circuit. These losses reduce greatly both the intensity and the number of the co-operative impulses, and since the initial intensity of each of these is necessarily limited only an insignificant amount of energy is thus made available for a single operation of the receiver. As this amount is consequently dependent on the energy conveyed to the receiver by one single impulse, it is evidently necessary to employ either a very large and costly and therefore objectionable transmitter or else to resort to the equally objectionable use of a receiving device too delicate and too easily deranged. Furthermore, the energy obtained through the co-operation of the impulses is in the form of extremely-rapid vibrations and because of this unsuitable for the operation of ordinary receivers, the more so as this form of energy imposes narrow restrictions in regard to the mode and time of its application to such devices. To overcome these and other limitations and disadvantages that have heretofore existed in such systems of transmission of signals or intelligence and to render possible an investigation of impulses or disturbances propagated through the natural media from any kind of source and their practical utilization for any purpose to which they are applicable, I have devised a novel method, which I have described in a pending application filed June 24, 1899, Serial No. 721,790, and which, broadly stated, consists in effecting during any desired time interval a storage of energy derived from such impulses and utilizing the potential energy so obtained for operating a receiving device.

My present invention is intended for the same general purposes, and it comprises a modified method and apparatus by means of which similar results may be obtained.

The chief feature which distinguishes my present from my former invention just referred to is that the energy stored is not, as in the former instance, obtained from the energy of the disturbances or effects transmitted from a distance, but from an independent source.

Expressed generally, my present method consists in charging a storage device with energy from an independent source controlling the charging of said device by the action of the effects or disturbances transmitted through the natural media and coincidentally using the stored energy for operating a receiving device.

A great variety of disturbances produced either by suitably-constructed transmitters or by natural causes are at present known to be propagated through the natural media, and there are also a variety of means or devices enabling energy to be stored, and in view of this I wish to say that I consider the utilization of any such disturbances and the employment of any of these means as within the scope of my present invention so long as the use of the general method hereinbefore stated is involved.

The best way of carrying out my invention which I at present know is to store electrical energy obtained from a suitable electrical generator in a condenser and to control the storage or the application of this energy by means of a sensitive device acted upon by the effects or disturbances, and thereby cause the operation of the receiver.

In the practical application of this method I usually proceed as follows: At any point where I desire to investigate or to utilize for any purpose effects or disturbances propagated through the natural media from any kind of source I provide a suitable generator of electricity—as, for example, a battery and a condenser—which I connect to the poles of the generator in series with a sensitive device capable of being modified in its electrical resistance or other property by the action of the disturbances emitted from the source. To the terminals of the condenser I connect the receiver which is to be operated in series with another device of suitable construction which performs the function of periodically discharging the condenser through the receiver at and during such intervals of time as may be best suitable for the purpose contemplated. This latter device may merely consist of two stationary electrodes separated by a feeble dielectric layer of minute thickness, but sufficient to greatly reduce or practically interrupt the current in the circuit under normal conditions, or it may comprise terminals one or more of which are movable

and actuated by any suitable force and are adapted to be brought into and out of contact with each other in any convenient manner. The sensitive device may be any of the 5 many devices of this kind which are known to be affected by the disturbances, impulses, or effects propagated through the media, and it may be of such a character that normally—that is, when not acted upon—it entirely prevents the passage of electricity from the generator to the condenser, or it may be such that it allows a gradual leaking through of the current and a charging of the condenser at a slow rate. In any case it will be seen 10 that if the disturbances, of whatever nature they may be, cause an appreciable diminution in the electrical resistance of the sensitive device the current from the battery will pass more readily into the condenser, which 15 will be charged at a more rapid rate, and consequently each of its discharges through the receiver, periodically effected by the special device before referred to which performs this function, will be stronger than normally—that is, when the sensitive device is 20 not acted upon by the disturbances. Evidently, then, if the receiver be so adjusted that it does not respond to the comparatively feeble normal discharges of the condenser, if 25 they should occur, but only to those stronger ones which take place upon the diminution of the resistance of the sensitive device, it will be operated only when this device is acted upon by the disturbances, thus making it 30 possible to investigate and to utilize the latter for any desired purpose.

The general principle underlying my invention and the operation of the various devices used will be clearly understood by 40 reference to the accompanying drawings, in which—

Figure 1 is a diagram illustrating a typical arrangement of apparatus which may be used in carrying my method into practice, and 45 Figs. 2, 3, 4, and 5 similar diagrams of modified arrangements of apparatus for the same purpose.

In Fig. 1, C is a condenser, to the terminals T and T' of which is connected a charging- 50 circuit including a battery B, a sensitive device a, and a resistance r, all connected in series, as illustrated. The battery should be preferably of very constant electromotive force and of an intensity carefully determined 55 to secure the best results. The resistance r, which may be a frictional or an inductive one, is not absolutely necessary; but it is of advantage to use it in order to facilitate adjustment, and for this purpose it may be made 60 variable in any convenient and preferably continuous manner. Assuming that the disturbances which are to be investigated or utilized for some practical end are rays identical with or resembling those of ordinary light, 65 the sensitive device a may be a selenium cell properly prepared, so as to be highly susceptible to the influence of the rays, the action

of which should be intensified by the use of a reflector A, shown in the drawings. It is well known that when cells of this kind are exposed to such rays of greatly-varying intensity they undergo corresponding modifications of their electrical resistance; but in the ways they have been heretofore used they have been of very limited utility. In addition to the circuit including the sensitive device or cell a another circuit is provided, which is likewise connected to the terminals T T' of the condenser. This circuit, which may be called the "receiving-circuit," includes the receiver R and in series with it a device d, before referred to, which performs the duty of periodically discharging the condenser through the receiver. It will be noted that, as shown in Fig. 1, the receiving-circuit 80 is in permanent connection with the battery and condenser terminal T, and it should be stated that it is sometimes desirable to entirely insulate the receiving-circuit at all times except the moments when the device 85 d operates to discharge the condenser, thus preventing any disturbing influence which might otherwise be caused in this circuit by the battery or the condenser during the period when the receiver should not be acted 90 upon. In such a case two devices, as d, may be used—one in each connection from the condenser to the receiving-circuit—or else one single device of this kind, but of a suitably-modified construction, so that it will make 95 and break simultaneously and at proper intervals of time both of the connections of this circuit with the condenser T and T'.

From the foregoing the operation of the apparatus as illustrated in Fig. 1 will be at 105 once understood. Normally—that is, when it is not influenced by the rays at all or very slightly—the cell a being of a comparatively high resistance permits only a relatively feeble current to pass from the battery into the 110 condenser, and hence the latter is charged at too slow a rate to accumulate during the time interval between two succeeding operations of the device d sufficient energy to operate the receiver or, generally speaking, to produce the required change in the receiving-circuit. This condition is readily secured by a proper selection and adjustment of the various devices described, so that the receiver will remain unresponsive to the feeble dis- 115 charges of the condenser which may take place when the cell a is acted upon but slightly or not at all by the rays or disturbances; but if now new rays are permitted to fall upon the cell or if the intensity of those already 120 acting upon it be increased by any cause then its resistance will be diminished and the condenser will be charged by the battery at a more rapid rate, enabling sufficient potential energy to be stored in the condenser during 125 the period of inaction of the device d to operate the receiver or to bring about any desired change in the receiving-circuit when the device d acts. If the rays acting upon the

cell or sensitive device a are varied or inter-
mittent in any arbitrary manner, as when
transmitting intelligence in the usual way
from a distant station by means of short and
long signals, the apparatus may readily be
made to record or to enable an operator to
read the message, since the receiver, sup-
posing it to be an ordinary magnetic relay,
for example, will be operated by each signal
from the sending-station a certain number of
times having some relation to the duration
of each signal. It will be readily seen, how-
ever, that if the rays are varied in any other
way, as by impressing upon them changes
in intensity, the succeeding condenser dis-
charges will undergo corresponding changes
in intensity, which may be indicated or re-
corded by a suitable receiver and distin-
guished irrespectively of duration.
With reference to Fig. 1, it may be useful
to state that the electrical connections of the
various devices illustrated may be made in
many different ways. For instance, the sen-
sitive device instead of being in series, as
shown, may be in a shunt to the condenser,
this modification being illustrated in Fig. 3,
in which the devices already described are
indicated by similar letters to correspond with
those of Fig. 1. In this case it will be ob-
served that the condenser which is being
charged from the battery B through the resist-
ance r , preferably inductive and properly re-
lated to the capacity of the condenser, will
store less energy when the sensitive device a
is energized by the rays and its resistance
thereby diminished. The adjustment of the
various instruments may then be such that
the receiver will be operated only when the
rays are diminished in intensity or interrupt-
ed and entirely prevented from falling upon
the sensitive cell, or the sensitive device may
be placed, as shown in Fig. 4, in a shunt to
the resistance r or inserted in any suitable
way in the circuit containing the receiver—
for example, as illustrated in Fig. 5—in both
of which figures the various devices are let-
tered to correspond with those in Fig. 1, so that
the figures become self-explanatory. Again,
the several instruments may be connected in
the manner of a Wheatstone bridge, as will be
hereinafter explained with reference to Fig. 2,
or otherwise connected or related; but in each
case the sensitive device will have the same
duty to perform—that is, to control the en-
ergy stored and utilized in some suitable way
for causing the operation of the receiver in
correspondence with the intermittences or
variations of the effects or disturbances, and
in each instance by a judicious selection of
the devices and careful adjustment the ad-
vantages of my method may be more or less
completely secured. I find it preferable, how-
ever, to follow the plan which I have illus-
trated and described.
It will be observed that the condenser is an
important element in the combination. I have
shown that by reason of its unique properties

it greatly adds to the efficacy of this method.
It allows the energy accumulated in it to be
discharged instantaneously, and therefore in 70
a highly-effective manner. It magnifies in a
large degree the current supplied from the
battery, and owing to these features it permits
energy to be stored and discharged at prac-
tically any rate desired, and thereby makes 75
it possible to obtain in the receiving-circuit
very great changes of the current strength by
impressing upon the battery-current very
small variations. Other means of storage
possessing these characteristics to a useful 80
degree may be employed without departing
from the broad spirit of my invention; but I
prefer to use a condenser, since in these re-
spects it excels any other storage device of
which I have knowledge. 85

In Fig. 2 a modified arrangement of ap-
paratus is illustrated which is particularly
adapted for the investigation and utilization
of very feeble impulses or disturbances, such
as may be used in conveying signals or pro-
ducing other desired effects at very great dis-
tances. In this case the energy stored in the
condenser is passed through the primary of a
transformer the secondary circuit of which
contains the receiver, and in order to render 90
the apparatus still more suitable for use in
detecting feeble impulses in addition to the
sensitive device which is acted upon by the
impulses another such device is included in
the secondary circuit of the transformer. The 100
scheme of connections is in the main that of
a Wheatstone bridge the four branches of
which are formed by the sensitive device a
and resistances L , L' , and L'' , all of which
should be preferably inductive and also ad-
justable in a continuous manner or at least
by very small steps. The condenser C' , which
is generally made of considerable capacity,
is connected to two opposite points of the
bridge, while a battery B , in series with a 110
continuously-adjustable non-inductive resist-
ance r' , is connected to the other pair of op-
posite points, as usual. The four resistances
included in the branches of the bridge—
namely, a , L , L' , and L'' —are of a suitable 115
size and so proportioned that under normal
conditions—that is, when the device a is not
influenced at all or only slightly by the dis-
turbances—there will be no difference of po-
tential or in any case the minimum of the same
at the terminals T and T' of the condenser. 120
It is assumed in the present instance that the
disturbances to be investigated or utilized are
such as will produce a difference of electric po-
tential, however small, between two points or
regions in the natural media—as the earth, 125
the water, or the air—and in order to apply
this potential difference effectively to the sen-
sitive device a the terminals of the same are
connected to two plates P and P' , which should
be of as large a surface as practicable and so
located in the media that the largest possible
difference of potential will be produced by
the disturbances between the terminals of 130

the sensitive device. This device is in the present case one of familiar construction, consisting of an insulating-tube, which is indicated by the heavy lines in the drawings and which has its ends closed tightly by two conducting-plugs with reduced extensions, upon which bear two brushes *b b*, through which the currents are conveyed to the device. The tubular space between the plugs is partially filled with a conducting sensitive powder, as indicated, the proper amount of the same and the size of its grains being determined and adjusted beforehand by experiment. This tube I rotate by clockwork or other means at a uniform and suitable rate of speed, and under these conditions I find that this device behaves toward disturbances of the kind before assumed in a manner similar to that of a stationary cell of celenium toward rays of light. Its electrical resistance is diminished when it is acted upon by the disturbances and is automatically restored upon the cessation of their influence. It is of advantage to employ round grains of powder in the tube, and in any event it is important that they should be of as uniform size and shape as possible and that provision should be made for maintaining an unchanging and very dry atmosphere in the tube. To the terminals *T* and *T'* of the condenser *C'* is connected a coil *p*, usually consisting of a few turns of a conductor of very small resistance, which is the primary of the transformer before referred to, in series with a device *d*, which effects the discharge of the condenser through the coil *p* at predetermined intervals of time. In the present case this device consists of a cylinder made partly of conducting and partly of insulating material *e* and *e'*, respectively, which is rotated at the desired rate of speed by any suitable means. The conducting part *e* is in good electrical connection with shaft *S* and is provided with tapering segments, as *f*, upon which slides a brush *k*, which should preferably be capable of longitudinal adjustment along the cylinder. Another brush *b'*, which is connected to the condenser-terminal *T'*, being arranged to bear upon the shaft *S*, it will be seen that whenever the brush *k* comes in contact with a conducting-segment *f* the circuit including the primary *p* will be completed and the condenser, if energized, discharged through the same. By an adjustment of the speed of rotation of the cylinder and a displacement of the brush *k* along the axis of the same the circuit may be made to open and close in as rapid succession and remain open or closed during such intervals of time as may be desired. In inductive relation to the primary *p* is a secondary coil *s*, usually of much thinner wire and of many more turns than the former, to which are connected in a series a receiver *R*, (illustrated as an ordinary magnetic relay,) a continuously-adjustable non-inductive resistance *r''*, a battery *B'* of a properly determined and very constant electromotive force,

and finally a sensitive device *a'* of the same or similar construction as *a*, which is likewise rotated at a uniform speed and which with its brushes *b'' b''* closes the secondary circuit. The electromotive force of the battery *B'* is so graduated by means of the adjustable resistance *r''* that the dielectric layers in the sensitive device *a'* are strained very nearly to the point of breaking down and give way upon a slight increase of the electrical pressure on the terminals of the device. It will of course be understood that the resistance *r''* is used mainly because of convenience and that it may be dispensed with, in which case the adjustment may be effected in many other ways, as by determining the proper amount or coarseness of the sensitive powder or by varying the distance apart of the metallic plugs in the ends of the tube. The same may be said of the resistance *r'*, which is in series with the battery *B* and serves to graduate the force of the latter, so that the dielectric layers of the sensitive device *a* are subjected to a similar strain and maintained in a state of delicate poise. The various instruments being connected and adjusted in the manner described, it will now be readily seen from the foregoing that under normal conditions, the device *a* being unaffected by the disturbances, or practically so, and there being no or only a very insignificant amount of energy stored in the condenser, the periodical closure of the primary circuit of the transformer through the operation of the device *d* will have no appreciable effect upon the primary coil *p*, and hence no currents will be generated in the secondary coil *s*, at least not such as would disturb the state of delicate balance existing in the secondary circuit including the receiver, and therefore the latter will not be actuated by the battery *B'*; but when, owing to the disturbances or impulses propagated through the media from a distant source, an additional electromotive force, however small, is created between the terminals of the device *a* the dielectric layers in the same, unable to support the increased strain, give way and allow the current of the battery *B* to pass through, thus causing a difference of potential at the terminals *T* and *T'* of the condenser. A sufficient amount of energy being now stored in this instrument during the time interval between each two succeeding operations of the device *d*, each closure of the primary circuit by the latter results in the passage of a sudden current impulse through the coil *p*, which induces a corresponding current of relatively high electromotive force in the secondary coil *s*. Owing to this the dielectric in the device *a'* gives way, and the current of the battery *B'* being allowed to pass the receiver *R* is operated, but only for a moment, since by the rotation of the devices *a*, *a'*, and *d*, which may be all driven from the same shaft, the original conditions are restored, assuming, of course, that the electromotive force set up by the disturbances

at the terminals of the sensitive device *a* is only momentary or of a duration not longer than the time of closure of the primary circuit; otherwise the receiver will be actuated 5 a number of times and so long as the influence of the disturbances upon the device *a* continues. In order to render the discharged energy of the condenser more effective in causing the operation of the receiver, the resistance of the primary circuit should be very small and the secondary coil *s* should have a 10 number of turns many times greater than that of the primary coil *p*. It will be noted that since the condenser under the above assumptions is always charged in the same direction the strongest current impulse in the secondary coil, which is induced at the moment when the brush *k* comes in contact with segment *f*, is also of unchanging direction, and 15 for the attainment of the best results it is necessary to connect the secondary coil so that the electromotive force of this impulse will be added to that of the battery and will momentarily strengthen the same. However, 20 under certain conditions, which are well understood by those skilled in the art, the devices will operate whichever way the secondary be connected. It is preferable to make the inductive resistances *L* and *L'* relatively 25 large, as they are in a shunt to the device *a* and might if made too small impair its sensitivity. On the other hand, the resistance *L''* should not be too large and should be related to the capacity of the condenser and 30 the number of makes and breaks effected by the device *d* in well-known ways. Similar considerations apply, of course, to the circuits including the primary *p* and secondary *s*, respectively.

35 40 By carefully observing well-known rules of scientific design and adjustment of the instruments the apparatus may be made extremely sensitive and capable of responding to the feeblest influences, thus making it possible to utilize impulses or disturbances transmitted from very great distances and too feeble to be detected or utilized in any of the ways heretofore known, and on this account the method here described lends itself to 45 many scientific and practical uses of great value. Obviously the character of the devices and the manner in which they are connected or related may be greatly varied without departing from the spirit of my invention.

50 55 What I claim as new, and desire to secure by Letters Patent, is—

1. The method hereinbefore described of utilizing effects or disturbances transmitted through the natural media, which consists in 55 charging a storage device with energy from an independent source, controlling the charging of said device by the action of the effects or disturbances, and coincidentally using the stored energy for operating a receiving device.
2. The method hereinbefore described of utilizing effects or disturbances transmitted

from a distant source, which consists in charging the storage device with electrical energy from an independent source, controlling the 70 charging of said device by the action of the effects or disturbances, and coincidentally using the stored electrical energy for operating the receiving device.

3. The method hereinbefore described of 75 utilizing effects or disturbances transmitted through the natural media, which consists in controlling, by means of such effects or disturbances, the charging of an electrical storage device from an independent source and 80 discharging the stored energy through a receiving-circuit.

4. The method hereinbefore described of 85 utilizing effects or disturbances transmitted through the natural media, which consists in controlling, by means of such effects or disturbances, the charging of an electrical condenser from an independent source, and discharging the stored energy through a receiving-circuit.

5. The method hereinbefore described of 90 utilizing effects or disturbances transmitted through the natural media, which consists in effecting a storage during any desired time interval and under control of such effects or 95 disturbances, of energy derived from an independent source, and utilizing the potential energy so obtained for operating a receiving device.

6. The method hereinbefore described of 100 utilizing effects or disturbances transmitted through the natural media, which consists in effecting a storage, during any desired time interval and under the control of such disturbances or effects of electrical energy derived from an independent source, and utilizing the potential energy so obtained for 105 operating a receiving device.

7. The method hereinbefore described of 110 utilizing effects or disturbances transmitted through the natural media, which consists in effecting a storage in a condenser during any 115 desired time interval and under the control of such disturbances or effects, of electrical energy derived from an independent source, and utilizing the potential energy so obtained for 120 operating a receiving device.

8. The method hereinbefore described of 125 utilizing effects or disturbances transmitted through the natural media from a distant source, which consists in storing, during succeeding intervals of time determined by means of such effects or disturbances, electrical energy derived from an independent source, and utilizing the potential energy so 130 accumulated to operate a receiving device.

9. The method hereinbefore described of utilizing effects or disturbances transmitted through the natural media from a distant source, which consists in storing in a condenser during succeeding intervals of time determined by means of such effects or disturbances, electrical energy derived from an independent source, and utilizing the poten-

tial energy so accumulated to operate a receiving device.

10. The method hereinbefore described of utilizing effects or disturbances transmitted through the natural media from a distant source, which consists in storing, during succeeding intervals of time determined by means of such effects or disturbances, electrical energy derived from an independent source, and using, for periods of time predetermined as to succession and duration, the accumulated energy so obtained to operate a receiving device.

11. The method hereinbefore described of utilizing effects or disturbances transmitted through the natural media from a distant source, which consists in storing in a condenser during succeeding intervals of time determined by means of such effects or disturbances, electrical energy derived from an independent source, and using, for periods of time predetermined as to succession and duration, the accumulated energy so obtained to operate a receiving device.

12. The method hereinbefore described of utilizing electrical effects or disturbances transmitted through the natural media from a distant source, which consists in effecting by means of such disturbances or effects a storage in a storage device of electrical energy derived from an independent source for periods of time corresponding in succession and duration to such disturbances or effects, and discharging the electrical energy so accumulated into or through a receiving device at predetermined intervals of time.

13. The method hereinbefore described of utilizing electrical effects or disturbances transmitted from a distant source, which consists in effecting by means of such disturbances or effects a storage in a condenser of electrical energy derived from an independent source for periods of time corresponding in succession and duration to such disturbances or effects, and discharging the electrical energy so accumulated into or through a receiving device at predetermined intervals of time.

14. The method hereinbefore described of utilizing electrical effects or disturbances transmitted from a distant source, which consists in producing, by means of such effects or disturbances, variations of resistance in a circuit including an independent electrical source and a device adapted to be charged with electrical energy therefrom, thereby causing the storage device to be charged with energy from such independent source, and using the potential electrical energy so accumulated to operate a receiving device.

15. The method hereinbefore described of utilizing effects or disturbances transmitted

through the natural media from a distant source, which consists in producing, by means of such effects or disturbances, variations of resistance in a circuit including an independent electrical source and a condenser, thereby causing the condenser to be charged with energy from the independent source, and using the potential electrical energy so accumulated to operate a receiving device.

16. The method hereinbefore described of utilizing effects or disturbances transmitted through the natural media from a distant source, which consists in causing, by means of such effects or disturbances, electrical energy from an independent source to be stored in a storage device, using the electrical energy so accumulated to operate a transformer and employing the secondary currents from such transformer to operate a receiving device.

17. The method hereinbefore described of utilizing effects or disturbances transmitted through the natural media from a distant source, which consists in causing, by means of such effects or disturbances, electrical energy from an independent source to be stored in a condenser, using the electrical energy so accumulated to operate a transformer and employing the secondary currents from such transformer to operate a receiving device.

18. The method hereinbefore described of utilizing effects or disturbances transmitted through the natural media from a distant source, which consists in causing, by means of such disturbances, variations of resistance in a circuit including an independent source of electricity and a storage device and thereby causing the storage device to be charged from such independent source, discharging the energy so accumulated in the storage device through the primary of a transformer at predetermined intervals of time, and operating a receiver by the currents so developed in the secondary of the transformer.

19. The method hereinbefore described of utilizing effects or disturbances transmitted through the natural media from a distant source, which consists in causing, by means of such disturbances, variations of resistance in a circuit including an independent source of electricity and a condenser and thereby causing the condenser to be charged from such independent source, discharging the energy so accumulated in the condenser through the primary of a transformer at predetermined intervals of time and operating a receiver by the currents so developed in the secondary of the transformer.

NIKOLA TESLA.

Witnesses:

F. LÖWENSTEIN,
E. A. SUNDERLIN.